Tuesday 3 June 2014

DC circuit equations and laws

DC circuit equations and laws



Ohm's and Joule's Laws



NOTE: the symbol "V" ("U" in Europe) is sometimes used to represent voltage instead of "E". In some cases, an author or circuit designer may choose to exclusively use "V" for voltage, never using the symbol "E." Other times the two symbols are used interchangeably, or "E" is used to represent voltage from a power source while "V" is used to represent voltage across a load (voltage "drop").


Kirchhoff's Laws

"The algebraic sum of all voltages in a loop must equal zero."

Kirchhoff's Voltage Law (KVL)



"The algebraic sum of all currents entering and exiting a node must equal zero."

Kirchhoff's Current Law (KCL)
DC circuit equations and laws



Ohm's and Joule's Laws



NOTE: the symbol "V" ("U" in Europe) is sometimes used to represent voltage instead of "E". In some cases, an author or circuit designer may choose to exclusively use "V" for voltage, never using the symbol "E." Other times the two symbols are used interchangeably, or "E" is used to represent voltage from a power source while "V" is used to represent voltage across a load (voltage "drop").


Kirchhoff's Laws

"The algebraic sum of all voltages in a loop must equal zero."

Kirchhoff's Voltage Law (KVL)



"The algebraic sum of all currents entering and exiting a node must equal zero."

Kirchhoff's Current Law (KCL)




Ohm's and Joule's Laws



NOTE: the symbol "V" ("U" in Europe) is sometimes used to represent voltage instead of "E". In some cases, an author or circuit designer may choose to exclusively use "V" for voltage, never using the symbol "E." Other times the two symbols are used interchangeably, or "E" is used to represent voltage from a power source while "V" is used to represent voltage across a load (voltage "drop").


Kirchhoff's Laws

"The algebraic sum of all voltages in a loop must equal zero."

Kirchhoff's Voltage Law (KVL)



"The algebraic sum of all currents entering and exiting a node must equal zero."

Kirchhoff's Current Law (KCL)

Sunday 1 June 2014

AMMETR

AMMETER



"Amperemeter" redirects here. For the unit of measurement, see Ampere-meter.
Demonstration model of a moving iron ammeter. As the current through the coil increases, the plunger is drawn further into the coil and the pointer deflects to the right.
Wire carrying current to be measured.
Spring providing restoring force
This illustration is conceptual; in a practical meter, the iron core is stationary, and front and rear spiral springs carry current to the coil, which is supported on a rectangular bobbin. Furthermore, the poles of the permanent magnet are arcs of a circle.
Ammeter from the old Penn StationTerminal Service Plant in New York City
Zero-center ammeter
An older moving iron ammeter with its characteristic non-linear scale and with the moving iron ammeter symbol mounted on asmall form factor PC.
An ammeter is a measuring instrument used to measure the electric current in acircuit. Electric currents are measured in amperes (A), hence the name. Instruments used to measure smaller currents, in the milliampere or microampere range, are designated as milliammeters or microammeters. Early ammeters were laboratory instruments which relied on the Earth's magnetic field for operation. By the late 19th century, improved instruments were designed which could be mounted in any position and allowed accurate measurements in electric power systems.
History[edit]
The relation between electric current, magnetic fields and physical forces was first noted by Hans Christian Ørsted who, in 1820, observed a compass[1]
 needle was deflected from pointing North when a current flowed in an adjacent wire. The tangent galvanometer was used to measure currents using this effect, where the restoring force returning the pointer to the zero position was provided by the Earth's magnetic field. This made these instruments usable only when aligned with the Earth's field. Sensitivity of the instrument was increased by using additional turns of wire to multiply the effect – the instruments were called "multipliers".

Types[edit]

Moving-coil[edit]

The D'Arsonval galvanometer is a moving coil ammeter. It uses magneticdeflection, where current passing through a coil causes the coil to move in amagnetic field. The modern form of this instrument was developed by Edward Weston, and uses two spiral springs to provide the restoring force. The uniform air gap between the iron core and the permanent magnet poles make the deflection of the meter linearly proportional to current. These meters have linear scales. Basic meter movements can have full-scale deflection for currents from about 25microamperes to 10 milliamperes.[2]
Because the magnetic field is polarised, the meter needle acts in opposite directions for each direction of current. A DC ammeter is thus sensitive to which way round it is connected; most are marked with a positive terminal, but some have centre-zero mechanisms[note 1] and can display currents in either direction. A moving coil meter indicates the average (mean) of a varying current through it,[note 2] which is zero for AC. For this reason moving-coil meters are only usable directly for DC, not AC.
This type of meter movement is extremely common for both ammeters and other meters derived from them, such as voltmeters and ohmmeters. Although their use has become less common in recent decades, this type of basic movement was once the standard indicator mechanism for any analogue displays involving electrical machinery.

d permanent magnet to provide the restoring force.

Electrodynamic[edit]

An electrodynamic movement uses an electromagnet instead of the permanent magnet of the d'Arsonval movement. T

Moving magnet[edit]

Moving magnet ammeters operate on essentially the same principle as moving coil, except that the coil is mounted in the meter case, and a permanent magnet moves the needle. Moving magnet Ammeters are able to carry larger currents than moving coil instruments, often several tens of Amperes, because the coil can be made of thicker wire and the current does not have to be carried by the hairsprings. Indeed, some Ammeters of this type do not have hairsprings at all, instead using a fixehis instrument can respond to both alternating and direct current[2] and also indicates true RMS for AC. See Wattmeter for an alternative use for this instrument.

Moving-iron[edit]

Moving iron ammeters use a piece of iron which moves when acted upon by the electromagnetic force of a fixed coil of wire. This type of meter responds to both directand alternating currents (as opposed to the moving-coil ammeter, which works on direct current only). The iron element consists of a moving vane attached to a pointer, and a fixed vane, surrounded by a coil. As alternating or direct current flows through the coil and induces a magnetic field in both vanes, the vanes repel each other and the moving vane deflects against the restoring force provided by fine helical springs.[2] The deflection of a moving iron meter is proportional to the square of the current. Consequently such meters would normally have a non linear scale, but the iron parts are usually modified in shape to make the scale fairly linear over most of its range. Moving iron instruments indicate the RMS value of any AC waveform applied.
The moving-iron meter was invented by Austrian engineer Friedrich Drexler in 1884.[3]

Hot-wire[edit]

In a hot-wire ammeter, a current passes through a wire which expands as it heats. Although these instruments have slow response time and low accuracy, they were sometimes used in measuring radio-frequency current.[2] These also measure true RMS for an applied AC current.

Digital[edit]

In much the same way as the analogue ammeter formed the basis for a wide variety of derived meters, including voltmeters, the basic mechanism for a digital meter is a digital voltmeter mechanism, and other types of meter are built around this.
Digital ammeter designs use a shunt resistor to produce a calibrated voltage proportional to the current flowing. This voltage is then measured by a digital voltmeter, through use of an analog to digital converter (ADC); the digital display is calibrated to display the current through the shunt. Such instruments are generally calibrated to indicate the RMS value for a sine wave only but some designs will indicate true RMS (sometimes with limitations as to wave shape).


VOLTMETER

VOLTMETER

voltmeter is an instrument used for measuring electrical potential difference between two points in an electric circuit. Analog voltmeters move a pointer across a scale in proportion to the voltage of the circuit; digital voltmeters give a numerical display of voltage by use of an analog to digital converter.
Voltmeters are made in a wide range of styles. Instruments permanently mounted in a panel are used to monitor generators or other fixed apparatus. Portable instruments, usually equipped to also measure current and resistance in the form of a multimeter, are standard test instruments used in electrical and electronics work. Any measurement that can be converted to a voltage can be displayed on a meter that is suitably calibrated; for example, pressure, temperature, flow or level in a chemical process plant.
General purpose analog voltmeters may have an accuracy of a few percent of full scale, and are used with voltages from a fraction of a volt to several thousand volts. Digital meters can be made with high accuracy, typically better than 1%. Specially calibrated test instruments have higher accuracies, with laboratory instruments capable of measuring to accuracies of a few parts per million. Meters usingamplifiers can measure tiny voltages of microvolts or less.
Part of the problem of making an accurate voltmeter is that of calibration to check its accuracy. In laboratories, the Weston Cell is used as a standard voltage for precision work. Precision voltage references are available based on electronic circuits.

Contents

  [hide] 
  • 1 Analog voltmeter
  • 2 VTVMs and FET-VMs
  • 3 Digital voltmeter
  • 4 See also
  • 5 References

Analog voltmeter[edit]

A moving coil galvanometer of thed'Arsonval type.
  • The red wire carries the current to be measured.
  • The restoring spring is shown ingreen.
  • N and S are the north and south poles of the magnet.
A moving coil galvanometer can be used as a voltmeter by inserting a high-resistance resistor in series with the instrument. It employs a small coil of fine wire suspended in a strong magnetic field. When an electric current is applied, the galvanometer's indicator rotates and compresses a small spring. The angular rotation is proportional to the current through the coil. For use as a voltmeter, a series resistor is added so that the angular rotation becomes proportional to the applied voltage.
One of the design objectives of the instrument is to disturb the circuit as little as possible and so the instrument should draw a minimum of current to operate. This is achieved by using a sensitive galvanometer in series with a high resistance.
The sensitivity of such a meter can be expressed as "ohms per volt", the number of ohms resistance in the meter circuit divided by the full scale measured value. For example a meter with a sensitivity of 1000 ohms per volt would draw 1 milliampere at full scale voltage; if the full scale was 200 volts, the resistance at the instrument's terminals would be 200,000 ohms and at full scale the meter would draw 1 milliampere from the circuit under test. For multi-range instruments, the input resistance varies as the instrument is switched to different ranges.
Moving-coil instruments with a permanent-magnet field respond only to direct current. Measurement of AC voltage requires a rectifier in the circuit so that the coil deflects in only one direction. Moving-coil instruments are also made with the zero position in the middle of the scale instead of at one end; these are useful if the voltage reverses its polarity.
Voltmeters operating on the electrostatic principle use the mutual repulsion between two charged plates to deflect a pointer attached to a spring. Meters of this type draw negligible current but are sensitive to voltages over about 100 volts and work with either alternating or direct current.

VTVMs and FET-VMs[edit]

The sensitivity and input resistance of a voltmeter can be increased if the current required to deflect the meter pointer is supplied by an amplifier and power supply instead of by the circuit under test. The electronic amplifier between input and meter gives two benefits; a rugged moving coil instrument can be used, since its sensitivity need not be high, and the input resistance can be made high, reducing the current drawn from the circuit under test. Amplified voltmeters often have an input resistance of 1, 10, or 20 megohms which is independent of the range selected. A once-popular form of this instrument used a vacuum tube in the amplifier circuit and so was called the vacuum tube voltmeter, or VTVM. These were almost always powered by the local AC line current and so were not particularly portable. Today these circuits use a solid-state amplifier using field-effect transistors, hence FET-VM, and appear in handheld digital multimeters as well as in bench and laboratory instruments. These are now so ubiquitous that they have largely replaced non-amplified multimeters except in the least expensive price ranges.
Most VTVMs and FET-VMs handle DC voltage, AC voltage, and resistance measurements; modern FET-VMs add current measurements and often other functions as well. A specialized form of the VTVM or FET-VM is the AC voltmeter. These instruments are optimized for measuring AC voltage. They have much wider bandwidth and better sensitivity than a typical multifunction device.

Digital voltmeter[edit]

Two digital voltmeters. Note the 40 microvolt difference between the two measurements, an offset of 34 parts per million.
The first digital voltmeter was invented and produced by Andrew Kay of Non-Linear Systems (and later founder of Kaypro) in 1954.
Digital voltmeters (DVMs) are usually designed around a special type of analog-to-digital converter called an integrating converter. Voltmeter accuracy is affected by many factors, including temperature and supply voltage variations. To ensure that a digital voltmeter's reading is within the manufacturer's specified tolerances, they should be periodically calibrated against a voltage standard such as the Weston cell.
Digital voltmeters necessarily have input amplifiers, and, like vacuum tube voltmeters, generally have a constant input resistance of 10 megohms regardless of set measurement range.

See also[edit]

  • Electrical measurements
  • Electrometer
  • Electronic test equipment
  • Metrology
  • Multimeter
  • Ohmmeter
  • Potentiometer (measuring instrument)
  • Solenoid voltmeter
  • Voltage divider
  • Class of accuracy in electrical measurements

Friday 23 May 2014

VOLTAGE CONTROLLER,

VOLTAGE CONTROLLER,



Voltage fluctuation is a common phenomenon in every part of the country. The industrial units running round the clock usually face the problem of low and high voltage. 90% of industrial load is of motors. Electric motors draw considerably high current at low & high voltage. This higher current affects the electrical motors (particularly smaller capacity motors up to 7.5 H.P.) in three ways.

Higher current produces higher losses in electrical motors which causes premature failure of winding
These higher losses of electric motors also increase the losses of cables, switches, transformers and other associated equipment
For smooth continuous operation of motors, overload relays are usually set at 20% higher setting.


Automatic Voltage Controller is the most efficient equipment used to tackle this problem. We are one of the principal Industrial Automatic Voltage Controller Suppliers in India. Servo Controlled Automatic Voltage Controller that we offer has various advantages that help in saving a lot on electricity bill.

Advantages
Reduction in Breakdown of Electrical Equipment
Energy Saving
Improvement in Power Factor
Reduction in MDI
Uniform Quality of End Product
80% Depreciation as per Income Tax Act

Payback Period

Owing to its high efficiency and associated benefits, the payback period for the cost of Servo Voltage Stabilizer is from 6-12 months depending upon the input voltage variation and number of working hours of the plant. The HIGHER the input voltage the SHORTER will be the payback period.

Description of Automatic Voltage Controller
Servo Stabilizer primarily consists of the following

Linear Type Plus/Minus type Vertical Rolling Contact type Regulator
Double Wound Buck/Boost Transformer
Electronic Control Circuit and meter panel.


The regulator and buck boost transformer are oil cooled, housed in same or separate steel tanks. Radiators, if necessary are provided for effective cooling. Their core is built from grain oriented silicon steel Laminations which keep losses to the minimum and they are wound with electrolytic grade copper to minimize the losses, vacuum impregnated and oven dried as per IS. Attention for Power Consumer Units Having L.T. Connections but Not Having Their Own Distribution Transformer and situated in Commercial / residential Areas.

It has been observed that the said power consumers usually face unbalanced input voltage problem and to overcome the same should install Automatic Voltage Controller suitable for unbalanced input voltage (individual phase control).

Solar Street Lighting System

Solar Street Lighting System

Home › Products › Solar Street Lighting System






We present the finest range of Solar Street Lighting System in the market. We are considered as one of the ace Street Lighting System Suppliers in Kanpur, UP. Solar Home Lighting System offered by us provides free, renewable energy in the home with every flick of a light switch. Solar lighting can aid with this by reducing reliance on fossil fuels and the electrical grid. In addition to this, it works to save the environment as well. The use of Solar Street Lighting System is a cost effective choice.

Application Areas
Street Lighting / Highway Lighting / Bridge Lighting purposes
Park Lighting & Garden Lighting purposes


Size & Quality
Octagonal/polygonal galvanized pole from 9meter to 12 meter on wind test of 180km per hour.

Wednesday 21 May 2014

ELECTRICAL GROUNDI ANDEARTHING SYSTEMS


ELECTRICAL GROUNDI  ANDEARTHING  SYSTEMS





Electrical grounding and earthing systems
Presentation Transcript
ELECTRICAL GROUNDING AND EARTHING SYSTEMS Presented By: T.Sidharth Sankar Achary Regd No-1021106019 7th sem. Electrical Engg.
CONTENTS INTRODUCTION. DIFFERENCE BETWEEN GROUND AND NEUTRAL. TYPES OF EARTHING SYSTEMS. TYPES OF GROUNDING. USES. CONCEPT OF VIRTUAL GROUND. MULTIPOINT GROUND. CONCLUSION. REFERENCES.
INTRODUCTION In electricity supply systems, an earthing system defines the electrical potential of the conductors relative to that of the Earths conductive surface. The choice of earthing system has implications for the safety and electromagnetic compatibility of the power supply. A protective earth (PE) connection ensures that all exposed conductive surfaces are at the same electrical potential as the surface of the Earth, to avoid the risk of electrical shock if a person touches a device in which an insulation fault has occurred. It also ensures that in the case of an insulation fault, a high fault current flows, which will trigger an over current protection device (fuse, MCB) that disconnects the power supply. A functional earth connection serves a purpose other than providing protection against electrical shock.
DIFFERENCE BETWEEN GROUND AND NEUTRAL. Ground or earth in a mains (AC power) electrical wiring system is a conductor that exists primarily to help protect against faults and which in normal operation does not carry current. Neutral is a circuit conductor that may carry current in normal operation, and which is usually connected to earth. In house wiring, it is the center tap connection of the secondary winding of the power companys transformer. In a polyphase or three-wire AC system, the neutral conductor is intended to have similar voltages to each of the other circuit conductors, and similar phase spacing. By this definition, a circuit must have at least three wires for one to serve as a neutral. In the electrical trade, the conductor of a 2-wire circuit that is connected to the supply neutral point and earth ground is also referred to as the "neutral". This is formally described in the US and Canadian electrical codes as the "identified" circuit conductor.
TYPES OF EARTHING SYSTEMS International standard IEC 60364 distinguishes three families of earthing arrangements, using the two-letter codes TN, TT, and IT. The first letter indicates the connection between earth and the power-supply equipment (generator or transformer): T : direct connection of a point with earth (French: terre); I : no point is connected with earth (isolation), except perhaps via a high impedance.The second letter indicates the connection between earth and the electrical device being supplied: T : direct connection with earth, independent of any other earth connection in the supply system; N : connection to earth via the supply network.
TN NETWORK
TN-S NETWORK
TN-C NETWORK
TN-C-S NETWORK
TT NETWORK
IT NETWORK
TYPES OF GROUNDING In radio frequency communications In AC power wiring installations Circuit ground versus earth. In lightning protection
In radio frequency communications An electrical connection to earth for as a reference potential for radio frequency antenna signals. High frequency signals can flow to earth through capacitance, capacitance to ground is an important factor in effectiveness of signal grounds. An ideal signal ground maintains zero voltage regardless of how much electrical current flows into ground or out of ground. The resistance at the signal frequency of the electrode-to-earth connection determines its quality, and that quality is improved by increasing the surface area of the electrode in contact with the earth, increasing the depth to which it is driven, using several connected ground rods, increasing the moisture of the soil, improving the conductive mineral content of the soil, and increasing the land area covered by the ground system.
In AC power wiring installations In a mains (AC power) wiring installation, the ground is a wire with an electrical connection to earth, that provides an alternative path to the ground for heavy currents that might otherwise flow through a victim of electric shock. These may be located locally, be far away in the suppliers network or in many cases both. This grounding wire is usually but not always connected to the neutral wire at some point. The ground wire is also usually bonded to pipe work to keep it at the same potential as the electrical ground during a fault. Water supply pipes often used to be used as ground electrodes but this was banned in some countries when plastic pipe such as PVC became popular. This type of ground applies to radio antennas and to lightning protection systems.
Circuit ground versus earth In an electrical circuit operating at signal voltages (usually less than 50 V or so), a common return path that is the zero voltage reference level for the equipment or system. Voltage is a differential quantity, which appears between two points having some electrical potentials. In order to deal only with a voltage (an electrical potential) of a single point, the second point has to be connected to a reference point (ground) having usually zero voltage. This signal ground may or may not actually be connected to a power ground. A system where the system ground is not actually connected to earth is often referred to as a floating ground.
In lightning protection A ground conductor on a lightning protection system is used to dissipate the strike into the earth.
USES A power ground serves to provide a return path for fault currents and therefore allow the fuse or breaker to disconnect the circuit. Filters also connect to the power ground, but this is mainly to stop the power ground carrying noise into the systems which the filters protect, rather than as a direct use of the power ground. In Single Wire Earth Return (SWER) electrical distribution systems, costs are saved by using just a single high voltage conductor for the power grid. This system is mostly used in rural areas where large earth currents will not otherwise cause hazards. Signal grounds serve as return paths for signals and power at low voltages (less than about 50 V) within equipment, and on the signal interconnections between equipment.
GENERAL GROUNDING
GENERATOR EARTHING
VIRTUAL GROUND CONCEPT If two opposite power sources are connected each other by a conductive medium so that their opposite output quantities are superposed (summed), zero or reference level result referred to as virtual ground appears somewhere along the medium. In this "conflict" point, the efforts of the "fighting" sources are "neutralized". The process is associated with continuous energy wasting from both the sources as a result of a continuous energy flow through the medium. Shortly, virtual ground phenomenon is summing of opposite equal quantities associated with continuous energy wasting; virtual ground represents the result of summing two opposite equal quantities.
MULTI POINT GROUND A Multipoint Ground is an alternate type of electrical installation that attempts to solve the Ground Loop and Mains hum problem by creating many alternate paths for electrical energy to find its way back to ground. The distinguishing characteristic of a multipoint ground is the use of many interconnected grounding conductors into a loose grid configuration. There will be many paths between any two points in a multipoint grounding system, rather than the single path found in a star topology ground.
CONCLUSIONGrounding and Earthing systems form the first lineof defense in every type of electrical systems. Thesystem may be a generator/transformer/housinginstallation/generating station/etc. So it is strictlyadvised to know the basic concepts of grounding asfar as electrical engg. is concerned.

EARTHING SYSTEM


EARTHING   SYSTEMS



TT SYSTEM

A TT system has a direct connection to the supply source to earth and a direct connection of the installation metalwork to earth. An example is an overhead line supply with earth electrodes, and the mass of earth as a return path as shown below.


Note that only single-phase systems have been shown for simplicity.



TN-S SYSTEM

A TN-S system has the supply source directly connected to earth, the installation metalwork connected to the neutral of the supply source via the lead sheath of the supply cable, and the neutral and protective conductors throughout the whole system performing separate functions.





The resistance around the loop P-B-N-E should be no more than 0.8 ohms.





TN-C-S SYSTEM

A TN-C-S system is as the TN-S but the supply cable sheath is also the neutral, i.e. it forms a combined earth/neutral conductor known as a PEN (protective earthed neutral) conductor.

The installation earth and neutral are separate conductors.

This system is also known as PME (protective multiple earthing).



The resistance around the P-B-N-N loop should be less than 0.35 ohms.



SUMMARY OF EARTHING SYSTEMS



The TT method is used mostly in country areas with overhead transmission lines. In contrast to the TN-S system there is no metallic path from the consumer's terminals back to the sub-station transformer secondary windings. Because the earth path may be of high resistance, a residual current circuit-breaker (R.C.C.B.) is often fitted so that if a fault current flows in the earth path then a trip disconnects the phase supply.

For protection against indirect contact in domestic premises, every socket outlet requires an RCCB with a maximum rated current of 30mA.



The TN-S system of wiring uses the incoming cable sheath as the earth return path and the phase and neutral have separate conductors. The neutral is then connected to earth back at the transformer sub-station.

Remember in TN-S, the T stands for earth (terre), N for neutral and S denotes that the protective (earth) and neutral conductors are separate.



The TN-C-S system has only two conductors in the incoming cable, one phase and the other neutral. The earth is linked to the neutral at the consumer unit. The neutral therefore is really a combined earth/neutral conductor hence the name PME.



In order to avoid the risk of serious electric shock, it is important to provide a path for earth leakage currents to operate the circuit protection, and to endeavour to maintain all metalwork at the same potential. This is achieved by bonding together all metalwork of electrical and non-electrical systems to earth.

The path for leakage currents would then be via the earth itself in TT systems or by a metallic return path in TN-S or TN-C-S systems.

GENERATOR,


Sunday 18 May 2014

AC GENERATOR ALTERNATOR



DIAGRAM   OF AC ALTERNATOR








AC GENERATOR ALTERNATOR

AC  GENERATOR  ALTERNATOR


A.C. generators or alternators (as they are usually called) operate on the same fundamental principles of electromagnetic induction as D.C. generators.

Alternating voltage may be generated by rotating a coil in the magnetic field or by rotating a magnetic field within a stationary coil. The value of the voltage generated depends on-

the number of turns in the coil.

strength of the field.

the speed at which the coil or magnetic field rotates.

ALL OF DETAILES ACMOTOR

ALL  OF DETAILES  ACMOTOR


AC motor
From Wikipedia, the free encyclopedia
Jump to: navigation, search

An AC motor is an electric motor driven by an alternating current (AC).

It commonly consists of two basic parts, an outside stationary stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft that is given a torque by the rotating field.

There are two main types of AC motors, depending on the type of rotor used. The first type is the induction motor or asynchronous motor; this type relies on a small difference in speed between the rotating magnetic field and the rotor to induce rotor current. The second type is the synchronous motor, which does not rely on induction and as a result can rotate exactly at the supply frequency or a sub-multiple of the supply frequency. The magnetic field on the rotor is either generated by current delivered through slip rings or by a permanent magnet. Other types of motors include eddy current motors, and also AC/DC mechanically commutated machines in which speed is dependent on voltage and winding connection.
Contents [hide]
1 History
2 Induction motor
2.1 Slip
2.2 Polyphase cage rotor
2.3 Polyphase wound rotor
2.4 Two-phase servo motor
2.5 Single-phase induction motor
2.5.1 Shaded-pole motor
2.5.2 Split-phase motor
2.5.2.1 Capacitor start motor
2.5.2.2 Resistance start motor
2.5.2.3 Permanent-split capacitor motor
3 Synchronous motor
3.1 Polyphase synchronous motor
3.2 Single-phase synchronous motor
3.3 Hysteresis synchronous motor
4 Other AC motor types
4.1 Universal motor and series wound motor
4.2 Repulsion motor
4.3 Exterior Rotor
4.4 Sliding rotor motor
4.5 Electronically commutated motor
4.6 Watthour-meter motor
4.7 Slow-speed synchronous timing motor
5 References
6 External links


History[edit]

Drawing from U.S. Patent 381968, illustrating principle of Tesla's alternating current motor.

Alternating current technology was rooted in Michael Faraday’s and Joseph Henry’s 1830-31 discovery that a changing magnetic field can induce an electric current in a circuit. Faraday is usually given credit for this discovery since he published his findings first.[1]

In 1832, French instrument maker Hippolyte Pixii generated a crude form of alternating current when he designed and built the first alternator. It consisted of a revolving horseshoe magnet passing over two wound wire coils.[2]

Because of AC's advantages in long distance high voltage transmission there were many inventors in the United States and Europe during the late 19th century trying to develop workable AC motors.[3] The first person to conceive of a rotating magnetic field was Walter Baily who gave a workable demonstration of his battery-operated polyphase motor aided by a commutator on June 28, 1879 to the Physical Society of London.[4] Nearly identical to Baily’s apparatus, French electrical engineer Marcel Deprez in 1880 published a paper that identified the rotating magnetic field principle and that of a two-phase AC system of currents to produce it.[5] Never practically demonstrated, the design was flawed as one of the two currents was “furnished by the machine itself.”[4] In 1886, English engineer Elihu Thomson built an AC motor by expanding upon the induction-repulsion principle and his wattmeter.[6] In 1887, American inventor Charles Schenk Bradley was the first to patent a two-phase AC power transmission with four wires.

"Commutatorless" alternating current induction motors seem to have been independently invented by Galileo Ferraris and Nikola Tesla. Ferraris demonstrated a working model of his single phase induction motor in 1885 and Tesla built his working two phase induction motor in 1887 and demonstrated it at the American Institute of Electrical Engineers in 1888[7][8][9] (although Tesla claimed that he conceived the rotating magnetic field in 1882).[10] In 1888, Ferraris published his research to the Royal Academy of Sciences in Turin, where he detailed the foundations of motor operation;[11] Tesla, in the same year, was granted a United States patent for his own motor.[12] Working from Ferraris's experiments, Mikhail Dolivo-Dobrovolsky introduced the first three-phase induction motor in 1890, a much more capable design that became the prototype used in Europe and the U.S.[13][14][15] He also invented the first three-phase generator and transformer and combined them into the first complete AC three-phase system in 1891.[16] The three phase motor design was also worked on by the Swiss engineer Charles Eugene Lancelot Brown[13] and other three-phase AC systems were developed by German technician Friedrich August Haselwander and Swedish engineer Jonas Wenström.[17]
Induction motor[edit]
Main article: Induction motor
Slip[edit]

If the rotor of a squirrel cage motor runs at the true synchronous speed, the flux in the rotor at any given place on the rotor would not change, and no current would be created in the squirrel cage. For this reason, ordinary squirrel-cage motors run at some tens of rpm slower than synchronous speed. Because the rotating field (or equivalent pulsating field) effectively rotates faster than the rotor, it could be said to slip past the surface of the rotor. The difference between synchronous speed and actual speed is called slip, and loading the motor increases the amount of slip as the motor slows down slightly. Even with no load, internal mechanical losses prevent the slip from being zero.

The speed of the AC motor is determined primarily by the frequency of the AC supply and the number of poles in the stator winding, according to the relation:


where
Ns = Synchronous speed, in revolutions per minute
F = AC power frequency
p = Number of poles per phase winding

Actual RPM for an induction motor will be less than this calculated synchronous speed by an amount known as slip, that increases with the torque produced. With no load, the speed will be very close to synchronous. When loaded, standard motors have between 2-3% slip, special motors may have up to 7% slip, and a class of motors known as torque motors are rated to operate at 100% slip (0 RPM/full stall).

The slip of the AC motor is calculated by:


where
Nr = Rotational speed, in revolutions per minute.
S = Normalised Slip, 0 to 1.

As an example, a typical four-pole motor running on 60 Hz might have a nameplate rating of 1725 RPM at full load, while its calculated speed is 1800 RPM.

The speed in this type of motor has traditionally been altered by having additional sets of coils or poles in the motor that can be switched on and off to change the speed of magnetic field rotation. However, developments in power electronics mean that the frequency of the power supply can also now be varied to provide a smoother control of the motor speed.

This kind of rotor is the basic hardware for induction regulators, which is an exception of the use of rotating magnetic field as pure electrical (not electromechanical) application.
Polyphase cage rotor[edit]

Most common AC motors use the squirrel cage rotor, which will be found in virtually all domestic and light industrial alternating current motors. The squirrel cage refers to the rotating exercise cage for pet animals. The motor takes its name from the shape of its rotor "windings"- a ring at either end of the rotor, with bars connecting the rings running the length of the rotor. It is typically cast aluminum or copper poured between the iron laminates of the rotor, and usually only the end rings will be visible. The vast majority of the rotor currents will flow through the bars rather than the higher-resistance and usually varnished laminates. Very low voltages at very high currents are typical in the bars and end rings; high efficiency motors will often use cast copper to reduce the resistance in the rotor.

In operation, the squirrel cage motor may be viewed as a transformer with a rotating secondary. When the rotor is not rotating in sync with the magnetic field, large rotor currents are induced; the large rotor currents magnetize the rotor and interact with the stator's magnetic fields to bring the rotor almost into synchronization with the stator's field. An unloaded squirrel cage motor at rated no-load speed will consume electrical power only to maintain rotor speed against friction and resistance losses. As the mechanical load increases, so will the electrical load - the electrical load is inherently related to the mechanical load. This is similar to a transformer, where the primary's electrical load is related to the secondary's electrical load.

This is why a squirrel cage blower motor may cause household lights to dim upon starting, but does not dim the lights on startup when its fan belt (and therefore mechanical load) is removed. Furthermore, a stalled squirrel cage motor (overloaded or with a jammed shaft) will consume current limited only by circuit resistance as it attempts to start. Unless something else limits the current (or cuts it off completely) overheating and destruction of the winding insulation is the likely outcome.

Virtually every washing machine, dishwasher, standalone fan, record player, etc. uses some variant of a squirrel cage motor.[citation needed]
Polyphase wound rotor[edit]

An alternate design, called the wound rotor, is used when variable speed is required. In this case, the rotor has the same number of poles as the stator and the windings are made of wire, connected to slip rings on the shaft. Carbon brushes connect the slip rings to an external controller such as a variable resistor that allows changing the motor's slip rate. In certain high-power variable speed wound-rotor drives, the slip-frequency energy is captured, rectified and returned to the power supply through an inverter. With bidirectionally controlled power, the wound-rotor becomes an active participant in the energy conversion process with the wound-rotor doubly fed configuration showing twice the power density.

Compared to squirrel cage rotors and without considering brushless wound-rotor doubly fed technology, wound rotor motors are expensive and require maintenance of the slip rings and brushes, but they were the standard form for variable speed control before the advent of compact power electronic devices. Transistorized inverters with variable-frequency drive can now be used for speed control, and wound rotor motors are becoming less common.

Several methods of starting a polyphase motor are used. Where the large inrush current and high starting torque can be permitted, the motor can be started across the line, by applying full line voltage to the terminals (direct-on-line, DOL). Where it is necessary to limit the starting inrush current (where the motor is large compared with the short-circuit capacity of the supply), reduced voltage starting using either series inductors, an autotransformer, thyristors, or other devices are used. A technique sometimes used is (star-delta, YΔ) starting, where the motor coils are initially connected in star for acceleration of the load, then switched to delta when the load is up to speed. This technique is more common in Europe than in North America. Transistorized drives can directly vary the applied voltage as required by the starting characteristics of the motor and load.

This type of motor is becoming more common in traction applications such as locomotives, where it is known as the asynchronous traction motor.
Two-phase servo motor[edit]

A typical two-phase AC servo-motor has a squirrel cage rotor and a field consisting of two windings:
a constant-voltage (AC) main winding.
a control-voltage (AC) winding in quadrature (i.e., 90 degrees phase shifted) with the main winding so as to produce a rotating magnetic field. Reversing phase makes the motor reverse.

An AC servo amplifier, a linear power amplifier, feeds the control winding. The electrical resistance of the rotor is made high intentionally so that the speed/torque curve is fairly linear. Two-phase servo motors are inherently high-speed, low-torque devices, heavily geared down to drive the load.
Single-phase induction motor[edit]

Three-phase motors produce a rotating magnetic field. However, when only single-phase power is available, the rotating magnetic field must be produced using other means. Several methods are commonly used:
Shaded-pole motor[edit]

A common single-phase motor is the shaded-pole motor and is used in devices requiring low starting torque, such as electric fans or the drain pump of washing machines and dishwashers or in other small household appliances. In this motor, small single-turn copper "shading coils" create the moving magnetic field. Part of each pole is encircled by a copper coil or strap; the induced current in the strap opposes the change of flux through the coil. This causes a time lag in the flux passing through the shading coil, so that the maximum field intensity moves across the pole face on each cycle. This produces a low level rotating magnetic field which is large enough to turn both the rotor and its attached load. As the rotor picks up speed the torque builds up to its full level as the principal magnetic field is rotating relative to the rotating rotor.

A reversible shaded-pole motor was made by Barber-Colman several decades ago. It had a single field coil, and two principal poles, each split halfway to create two pairs of poles. Each of these four "half-poles" carried a coil, and the coils of diagonally opposite half-poles were connected to a pair of terminals. One terminal of each pair was common, so only three terminals were needed in all.

The motor would not start with the terminals open; connecting the common to one other made the motor run one way, and connecting common to the other made it run the other way. These motors were used in industrial and scientific devices.

An unusual, adjustable-speed, low-torque shaded-pole motor could be found in traffic-light and advertising-lighting controllers. The pole faces were parallel and relatively close to each other, with the disc centred between them, something like the disc in a watthour meter. Each pole face was split, and had a shading coil on one part; the shading coils were on the parts that faced each other. Both shading coils were probably closer to the main coil; they could have both been farther away, without affecting the operating principle, just the direction of rotation.

Applying AC to the coil created a field that progressed in the gap between the poles. The plane of the stator core was approximately tangential to an imaginary circle on the disc, so the travelling magnetic field dragged the disc and made it rotate.

The stator was mounted on a pivot so it could be positioned for the desired speed and then clamped in position. Keeping in mind that the effective speed of the travelling magnetic field in the gap was constant, placing the poles nearer to the centre of the disc made it run relatively faster, and toward the edge, slower.

It is possible that these motors are still in use in some older installations.
Split-phase motor[edit]

Another common single-phase AC motor is the split-phase induction motor,[18] commonly used in major appliances such as air conditioners and clothes dryers. Compared to the shaded pole motor, these motors can generally provide much greater starting torque.

A split-phase motor has a startup winding separate from the main winding. When the motor is starting, the startup winding is connected to the power source via a centrifugal switch which is closed at low speed. In non-reversible models, the starting winding is wound with fewer turns of smaller wire than the main winding, so it has a lower inductance (L) and higher resistance (R). In reversible motors, the start and run windings are exactly identical. The L/R ratio creates a small phase shift, not more than about 30 degrees, between the flux due to the main winding and the flux of the starting winding. The starting direction of rotation is determined by the order of the connections of the startup winding relative to the running winding.

The phase of the magnetic field in this startup winding is shifted from the phase of the supply power, which creates a moving magnetic field to start the motor. Once the motor reaches near design operating speed, the centrifugal switch opens, disconnecting the startup winding from the power source. The motor then operates solely on the main winding. The purpose of disconnecting the startup winding is to eliminate the energy loss due to its added resistance.
Capacitor start motor[edit]

Schematic of a capacitor start motor.

A capacitor start motor is a split-phase induction motor with a starting capacitor inserted in series with the startup winding, creating an LC circuit which produces a greater phase shift (and so, a much greater starting torque) than both split-phase and shaded pole motors. The capacitor naturally adds expense to such motors.
Resistance start motor[edit]

A resistance start motor is a split-phase induction motor with a starter inserted in series with the startup winding, creating reactance. This added starter provides assistance in the starting and initial direction of rotation.
Permanent-split capacitor motor[edit]

Another variation is the permanent-split capacitor (PSC) motor (also known as a capacitor start and run motor).[19] This motor operates similarly to the capacitor-start motor described above, but there is no centrifugal starting switch,[19] and what correspond to the "start" windings (second windings) are permanently connected to the power source (through a run capacitor), along with the run windings.[19] PSC motors are frequently used in air handlers, blowers, and fans (including ceiling fans) and other cases where variable speeds are desired.

A capacitor that ranges from 1 to 100 microfarads is connected in series with the start (auxiliary) winding and remains in the circuit during the entire run cycle.[19] The start and run windings are identical in a reversible motor,[19] and reverse motion can be achieved by reversing the wiring of the 2 windings,[19] causing the other winding to be connected through the capacitor, and therefore act as the "start" winding. Non-reversible motors have smaller, thinner start windings, similar to non-reversible split phase motors. By changing taps on the running winding but keeping the load constant, the motor can be made to run at different speeds.

Three-phase motors can be converted to PSC motors by making common two windings and connecting the third via a capacitor to act as a start winding. However, the power rating needs to be at least 50% larger than for a comparable single-phase motor due to an unused winding.[20]
Synchronous motor[edit]
Main article: Synchronous motor

Three-phase system with rotating magnetic fields.
Polyphase synchronous motor[edit]

If connections to the rotor coils of a three-phase motor are taken out on slip-rings and fed a separate field current to create a continuous magnetic field (or if the rotor consists of a permanent magnet), the result is called a synchronous motor because the rotor will rotate synchronously with the rotating magnetic field produced by the polyphase electrical supply.

The synchronous motor can also be used as an alternator.

Nowadays, synchronous motors are frequently driven by transistorized variable-frequency drives. This greatly eases the problem of starting the massive rotor of a large synchronous motor. They may also be started as induction motors using a squirrel-cage winding that shares the common rotor: once the motor reaches synchronous speed, no current is induced in the squirrel-cage winding so it has little effect on the synchronous operation of the motor, aside from stabilizing the motor speed on load changes.

Synchronous motors are occasionally used as traction motors; the TGV may be the best-known example of such use.

One use for this type of motor is its use in a power factor correction scheme. They are referred to as synchronous condensers. This exploits a feature of the machine where it consumes power at a leading power factor when its rotor is over excited. It thus appears to the supply to be a capacitor, and could thus be used to correct the lagging power factor that is usually presented to the electric supply by inductive loads. The excitation is adjusted until a near unity power factor is obtained (often automatically). Machines used for this purpose are easily identified as they have no shaft extensions. Synchronous motors are valued in any case because their power factor is much better than that of induction motors, making them preferred for very high power applications.

Some of the largest AC motors are pumped-storage hydroelectricity generators that are operated as synchronous motors to pump water to a reservoir at a higher elevation for later use to generate electricity using the same machinery. Six 500-megawatt generators are installed in the Bath County Pumped Storage Station in Virginia, USA. When pumping, each unit can produce 642,800 horsepower (479.3 megawatts).[21].
Single-phase synchronous motor[edit]

Small single-phase AC motors can also be designed with magnetized rotors (or several variations on that idea; see "Hysteresis synchronous motors" below).

If a conventional squirrel-cage rotor has flats ground on it to create salient poles and increase reluctance, it will start conventionally, but will run synchronously, although it can provide only a modest torque at synchronous speed. This is known as a reluctance motor.

Because inertia makes it difficult to instantly accelerate the rotor from stopped to synchronous speed, these motors normally require some sort of special feature to get started. Some include a squirrel-cage structure to bring the rotor close to synchronous speed. Various other designs use a small induction motor (which may share the same field coils and rotor as the synchronous motor) or a very light rotor with a one-way mechanism (to ensure that the rotor starts in the "forward" direction). In the latter instance, applying AC power creates chaotic (or seemingly chaotic) jumping movement back and forth; such a motor will always start, but lacking the anti-reversal mechanism, the direction it runs is unpredictable. The Hammond organ tone generator used a non-self-starting synchronous motor (until comparatively recently), and had an auxiliary conventional shaded-pole starting motor. A spring-loaded auxiliary manual starting switch connected power to this second motor for a few seconds.
Hysteresis synchronous motor[edit]

These motors are relatively costly, and are used where exact speed (assuming an exact-frequency AC source) as well as rotation with a very small amount of fast variations in speed (called 'flutter" in audio recordings) is essential. Applications included tape recorder capstan drives (the motor shaft could be the capstan), and, before the advent of crystal control, motion picture cameras and recorders. Their distinguishing feature is their rotor, which is a smooth cylinder of a magnetic alloy that stays magnetized, but can be demagnetized fairly easily as well as re-magnetized with poles in a new location. Hysteresis refers to how the magnetic flux in the metal lags behind the external magnetizing force; for instance, to demagnetize such a material, one could apply a magnetizing field of opposite polarity to that which originally magnetized the material. These motors have a stator like those of capacitor-run squirrel-cage induction motors. On startup, when slip decreases sufficiently, the rotor becomes magnetized by the stator's field, and the poles stay in place. The motor then runs at synchronous speed as if the rotor were a permanent magnet. When stopped and restarted, the poles are likely to form at different locations. For a given design, torque at synchronous speed is only relatively modest, and the motor can run at below synchronous speed. In simple words, it is lagging magnetic field behind magnetic flux.
Other AC motor types[edit]
Universal motor and series wound motor[edit]
Main article: Universal motor

A universal motor is a design that can operate on either AC or DC power. In universal motors the stator and rotor of a brushed DC motor are both wound and supplied from an external source, with the torque being a function of the rotor current times the stator current so reversing the current in both rotor and stator does not reverse the rotation. Universal motors can run on AC as well as DC provided the frequency is not so high that the inductive reactance of the stator winding and/or eddy current losses become problems. Nearly all universal motors are series-wound because their stators have relatively few turns, minimizing inductance. Universal motors are compact, have high starting torque and can be varied in speed over a wide range with relatively simple controls such as rheostats and PWM choppers. Compared with induction motors, universal motors do have some drawbacks inherent to their brushes and commutators: relatively high levels of electrical and acoustic noise, low reliability and more frequent required maintenance.

Universal motors are widely used in small home appliances and hand power tools. Until the 1970s they dominated electric traction (electric, including diesel-electric railway and road vehicles); many traction power networks still use special low frequencies such as 16.7 and 25 Hz to overcome the aforementioned problems with losses and reactance. Still widely used, universal traction motors have been increasingly displaced by polyphase AC induction and permanent magnet motors with variable-frequency drives made possible by modern power semiconductor devices.
Repulsion motor[edit]
Main article: Repulsion motor

Repulsion motors are wound-rotor single-phase AC motors that are a type of induction motor. In a repulsion motor, the armature brushes are shorted together rather than connected in series with the field, as is done with universal motors. By transformer action, the stator induces currents in the rotor, which create torque by repulsion instead of attraction as in other motors. Several types of repulsion motors have been manufactured, but the repulsion-start induction-run (RS-IR) motor has been used most frequently. The RS-IR motor has a centrifugal switch that shorts all segments of the commutator so that the motor operates as an induction motor once it is close to full speed. Some of these motors also lift the brushes out of contact with source voltage regulation. Few repulsion motors of any type are sold as of 2005.
Exterior Rotor[edit]

Where speed stability is important, some AC motors (such as some Papst motors) have the stator on the inside and the rotor on the outside to optimize inertia and cooling.
Sliding rotor motor[edit]

AC Motor with sliding rotors

A conical rotor brake motor incorporates the brake as an integral part of the conical sliding rotor. When the motor is at rest, a spring acts on the sliding rotor and forces the brake ring against the brake cap in the motor, holding the rotor stationary. When the motor is energized, its magnetic field generates both an axial and a radial component. The axial component overcomes the spring force, releasing the brake; while the radial component causes the rotor to turn. There is no additional brake control required.

The high starting torque and low inertia of the conical rotor brake motor has proven to be ideal for the demands of high cycle dynamic drives in applications since the motor was invented, designed and introduced over 50 years ago. This type of motor configuration was first introduced in the USA in 1963.

Single-speed or two speed motors are designed for coupling to gear motor system gearboxes. Conical rotor brake motors are also used to power micro speed drives.

Motors of this type can also be found on overhead cranes and hoists. The micro speed unit combines two motors and an intermediate gear reducer. These are used for applications where extreme mechanical positioning accuracy and high cycling capability are needed. The micro speed unit combines a “main” conical rotor brake motor for rapid speed and a “micro” conical rotor brake motor for slow or positioning speed. The intermediate gearbox allows a range of ratios, and motors of different speeds can be combined to produce high ratios between high and low speed.
Electronically commutated motor[edit]
Main article: Brushless DC electric motor

Electronically commutated (EC) motors are electric motors powered by direct-current (DC) electricity and having electronic commutation systems, rather than mechanical commutators and brushes. The current-to-torque and frequency-to-speed relationships of BLDC motors are linear. While the motor coils are powered by DC, power may be rectified from AC within the casing.
Watthour-meter motor[edit]

These are two-phase induction motors with permanent magnets to retard the rotor so its speed is accurately proportional to the power passing through the meter. The rotor is an aluminium-alloy disc, and currents induced into it react with the field from the stator.

A split-phase watthour meter has a stator with three coils facing the disc. The magnetic circuit is completed by a C-shaped core of permeable iron. The "voltage" coil above the disc is in parallel with the supply; its many turns have a high inductance/resistance ratio (Q) so its current and magnetic field are the time integral of the applied voltage, lagging it by 90 degrees. This magnetic field passes down perpendicularly through the disc, inducing circular eddy currents in the plane of the disc centered on the field. These induced currents are proportional to the time derivative of the magnetic field, leading it by 90 degrees. This puts the eddy currents in phase with the voltage applied to the voltage coil, just as the current induced in the secondary of a transformer with a resistive load is in phase with the voltage applied to its primary.

The eddy currents pass directly above the pole pieces of two "current" coils under the disc, each wound with a few turns of heavy-gauge wire whose inductive reactance is small compared to the load impedance. These coils connect the supply to the load, producing a magnetic field in phase with the load current. This field passes from the pole of one current coil up perpendicularly through the disc and back down through the disc to the pole of the other current coil, with a completed magnetic circuit back to the first current coil. As these fields cross the disc, they pass through the eddy currents induced in it by the voltage coil producing a Lorentz force on the disc mutually perpendicular to both. Assuming power is flowing to the load, the flux from the left current coil crosses the disc upwards where the eddy current flows radially toward the center of the disc producing (by the right hand rule) a torque driving the front of the disc to the right. Similarly, the flux crosses down through the disc to the right current coil where the eddy current flows radially away from the disc center, again producing a torque driving the front of the disc to the right. When the AC polarity reverses, the eddy currents in the disc and the direction of the magnetic flux from the current coils both change, leaving the direction of the torque unchanged.

The torque is thus proportional to the instantaneous line voltage times the instantaneous load current, automatically correcting for power factor. The disc is braked by a permanent magnet so that speed is proportional to torque and the disc mechanically integrates real power. The mechanical dial on the meter reads disc rotations and the total net energy delivered to the load. (If the load supplies power to the grid, the disc rotates backwards unless prevented by a ratchet, thus making net metering possible.)

In a split-phase watthour meter the voltage coil is connected between the two "hot" (line) terminals (240V in North America) and two separate current coils are connected between the corresponding line and load terminals. No connection to the system neutral is needed to correctly handle combined line-to-neutral and line-to-line loads. Line-to-line loads draw the same current through both current coils and spin the meter twice as fast as a line-to-neutral load drawing the same current through only a single current coil, correctly registering the power drawn by the line-to-line load as twice that of the line-to-neutral load.

Other variations of the same design are used for polyphase (e.g., 3-phase) power.
Slow-speed synchronous timing motor[edit]

Representative are low-torque synchronous motors with a multi-pole hollow cylindrical magnet (internal poles) surrounding the stator structure. An aluminum cup supports the magnet. The stator has one coil, coaxial with the shaft. At each end of the coil are a pair of circular plates with rectangular teeth on their edges, formed so they are parallel with the shaft. They are the stator poles. One of the pair of discs distributes the coil's flux directly, while the other receives flux that has passed through a common shading coil. The poles are rather narrow, and between the poles leading from one end of the coil are an identical set leading from the other end. In all, this creates a repeating sequence of four poles, unshaded alternating with shaded, that creates a circumferential traveling field to which the rotor's magnetic poles rapidly synchronize. Some stepping motors have a similar structure.
References